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Mathematical virology: a novel approach to the 
structure and assembly of viruses

● a paper by Reidun Twarock, Departments of Mathematics and Biology, 
University of York

● 2006
● goal: understand the structure  and life cycle of viruses
● benefit: crucial impact on public health sector

○ design of antiviral therapeutics
● mathematical tools from the area of quasicrystals

Source: Twarock R. Mathematical virology: a novel approach to the structure and assembly of viruses. Philos Trans A Math Phys Eng Sci. 2006 Dec 15;364(1849):3357-73.



Outline

● What is a virus?
○ Icosahedrons and rotational axes

● Caspar-Klug Theory
● Viral Tiling Theory



A virus is a submicroscopic infectious agent that 
replicates only inside the living cells of an organism

● Capsid: protein shell of a virus, enclosing its genetic material

Source: https://en.wikipedia.org/wiki/Capsid (13.10.2021)

https://en.wikipedia.org/wiki/Capsid


a polyhedron is a three-dimensional shape with flat 
polygonal faces, straight edges and sharp vertices

Source: https://en.wikipedia.org/wiki/Icosahedron (13.10.2021)

https://en.wikipedia.org/wiki/Icosahedron


x-fold rotation axis

If an object appears identical x-times in a 360° rotation, then it has an x-fold 
rotation axis

Source: https://www2.fkf.mpg.de/andersen/fullerene/symmetry.html (13.10.2921)

https://www2.fkf.mpg.de/andersen/fullerene/symmetry.html


Icosahedron: rotational symmetry axes

● 6 fivefold
● 10 threefold
● 15 twofold

Source: Luque, Reguera, Theoretical Studies on Assembly, Physical Stability and Dynamics of Viruses, Sub-cellular Biochemistry 68:553-95, 2013



Capsomeres
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Lattices

A lattice in ℝn is a subgroup of the additive group ℝn 
which:

● is isomorphic to the additive group ℤn

● spans the real vector space ℝn

A lattice  is the symmetry group of discrete 
translational symmetry in n directions

Examples:
● for any basis of ℝn, the subgroup of all linear 

combinations with integer coefficients of the basis 
vectors forms a lattice

● subgroup ℤn

Source: https://en.wikipedia.org/wiki/Lattice_(group) (27.10.2021)

https://en.wikipedia.org/wiki/Lattice_(group)


Caspar–Klug theory I

● applicable to icosahedral viruses 
with protein subunits organized to a 
hexagonal surface lattice

● goal: predict locations and relative 
orientations of the protein clusters

● embeddings of the surface of an 
icosahedron into a hexagonal 
lattice

● blueprint for a viral capsid 

Source: https://viralzone.expasy.org/8577 (25.10.21)

https://viralzone.expasy.org/8577


Caspar-Klug theory II

● triangulation
● 3 protein subunits per 

triangle
● subdivision of each triangle in 

4 triangles 



Source: https://viralzone.expasy.org/8577 (25.10.21)

https://viralzone.expasy.org/8577


Triangulation number T

● counts the number of 
symmetrically distinct but 
quasi-equivalent triangular 
facets in the triangulation 
per face of icosahedron

● T = h2 + hk + k2

○ h: number of units in straight 
line toward next pentagone

○ k: number of units shifted in 
either side to reach the next 
pentagon

Source: https://viralzone.expasy.org/8577 (25.10.21)

https://viralzone.expasy.org/8577
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Viral tiling theory I

● differs from the Caspar–Klug theory by the introduction of more general types 
of surface lattices

● incorporates Caspar-Klug theory
● describes how surfaces can be tessellated in terms of a set of building blocks 

called tiles
● tilings inferred via projections from higher-dimensional lattices



Coxeter Group H3

● group consisting of 120 Elements
● action of these elements can be represented as reflections and rotations in 

the three dimensional space
● can transform one single point of space into 120 different points
● result is a geometrical object that consists of 120 vertices
● generalized lattices can be inferred from H3
● rotational symmetries of the icosahedral group are generated by the 

reflections rj in H3

Source: https://geometricgroups.jimdofree.com/group/coxeter-h3/ (25.10.21)

https://geometricgroups.jimdofree.com/group/coxeter-h3/




Viral tiling theory II

● vectors in the root system of H3 are related to a particular choice of basis 
vectors of the icosahedrally symmetric lattice D6 via projection

● hence we can work with the root system of H3 directly
● idea: extend the root system of H3 by a further vector
● new operation
● iterated action leads to pint sets with icosahedral symmetry

○ starting point for the construction of generalized grids with icosahedral symmetry







 Predictions of viral tiling theory

● predicts the locations of the protein subunits
● also specifies the locations of the inter-subunit bonds between proteins in 

different capsomeres



Applications of viral tiling theory

● Manipulating the assembly of viral capsids 
● classification of tubular malformations in viruses
● crosslinking structures



Outlook

● create more accurate assembly models for various viruses
○ anti-viral drug design

● assembly of RNA viruses
● modelling physical properties
● understanding genome packaging



Summary I

Protein containers encapsulating viral genomes are salient features of virus 
architecture

In most viruses, these containers are organized with icosahedral symmetry for 
reasons of genetic economy, and group theory can therefore be used to better 
understand virus geometry

Twarock has developed affine extensions of icosahedral symmetry to derive 
predictive information on the organization of viruses at different radial levels

Credits to Phlipp Mekler



Summary II

Since icosahedral symmetry is non-crystallographic in three dimensions, i.e. is not 
compatible with periodic lattices, standard techniques for affine extensions do not 
apply in this case

Twarock has developed a new framework for the construction of such affine 
extensions in the context of non-crystallographic Coxeter groups

Credits to Phlipp Mekler


