The inverse relation of R is the relation R~ C B x A given by

Mathematical Indu Definition ( . !

Proof (of the truth) of proposition P(n) Let 51, ..., S, be sets. R= ={(ba)|(ab) € R}.

for all natural numbers n with n > m: A relation over S;,....S,isaset RC S % --- % Sp. Definition (Composition of relations)
= basis: proof of P(m) The arity of R is n. e b

m induction hypothesis (IH):
suppose that P(k) is true for all k with m< k <n

= A relation of arity n is a set of n-tuples. The composition of Ry and R is the relation Rz o Ry with:

m The set contains the tuples Rz 0 Ry = {(a,c) | there is a b € B with
= inductive step: proof of P(n+1) for which the informal property is true. (a.b) € Ry and (b.c) € R}
using the induction hypothesis
w reflexive: (x,x) € Rforallx € S . - - v
. . ) . u irreflexive: (x,x) & Rforall x € § Theorem (¢ ciativity of composition)
m Weak induction: Induction hypothesis only supposes ® symmetric: (x,y) € Riff (y,x) € R Let5..... 54 be sets and Ry, Rz, Ry relations with R; C 5; = 5;44.
that P(k) is true for k = n w asymmetric: if (x,y) € R then (y,x) & R Then Sy T
. . - . m antisymmetric: if (x,y) € R then (y.x) & Rorx =y 30(Rao k1) =(R3eRz)o K.
m Strong induction: Induction hypothesis supposes u transitive: if (x,y) & R and (y,2) € R then (x,2) € R Definition ( Transitive closure)

that P(k) is true for all k & Mg with m < k < n
® also: complete induction Irreflexivity = not reflexiv

The transitive closure R* of a relation R over set S is the
smallest relation over S that is transitive and has R as a subset.

. v => i {l e o
contrapos: reflexiv => not irreflexiv The transitive closure always exists. \Why?

e Definition

. . . e assymetry = Firreflexive because 5xS is trans and contains R
A set M can be defined inductively by specifying assym => antisym R* is the intersecticn of all R in S5
= basic elenjents e Define the i-th power of a homogeneous relation R as
m construction rules of the form A partition of a set 5 is a set P C P(S) such that
“Given some elements of M, another element of M u X # 0 for all X € P, notcontain empty set R'=R if i =1and

can be constructed like this.” 1 Uxep X = 5, and every element of S must be in at least 1 subset of parfition R —RoRI-! for i > 1

XNY =0forall X, Y € Pwith X # Y, everyelementin at mosf1 ——

The elements of P are called the blocks of the partition. . . - .
Let R be a relation over set 5. Then R* = | =, R'.

Structural Induction

For e € S we denote by [e]p the block X € P such that e € X,

Proof of statement for all elements of an inductively defined set

(Relation induced by a pa

A binary relation K over sets A and B is functional

m basis: proof of the statement for the basic elements

Let S be a set and P be a partition of 5. . - . = . -
= induction hypothesis (IH): The relation ~p induced by P is the binary relation over S with I fmery €A tere is (N one b € B with (a,b) € R.
suppose that the statement is true for some elements M Definition (Partial functic
w inductive step: proof of the statement for elements x ey iff e = Dlp A partial function f from set A to set B (written f : A~ B)
constructed by applying a construction rule to M m A relation is an equivalence relation is given by a functional relation G over A and B.
(one inductive step for each construction rule) , if it |s‘ reflexive, symmetric arnd transm\@. TeEEn @ 5l e A 6
__ i _ _ _ m A partial order is reflexive, antisymmetric and transitive.
Cetitiont(LeavesloiialEinyalze) w With a total order < over S there are 5 incomparable elements Definition (demain of definition, codomain, image)
The number of leaves of a binary tree B, written leaves(B), no elements x,y € 5 with x A y and y 7 x. ) n 3
is defined as follows: w If x is the greatest element of a set S, it is greater than every Let f : A~ B be a partial function.
element: for all y € 5 it holds that y < x. Set A is called the domain of f, set B is its codomain
= If x i imal ele it i I o e -
jeaves{Cl) = 1 - an; ::St:eLrlslilz:nte;:rrfl::r:fsgfn;i’:esn :.:E Zois;n:.‘.:r:ﬁll The domain of definition of f is the set
leaves((L, O, R)) = leaves(L) + leaves(R) dom(f) = {x € A| there is a y € B with f(x) = y}.
A set can have several minimal elements and no least element. ) .
Definition (Inner Nodes of a Binary Tree) Example? The :rmage (or ':nge) of fis t:e SEth ;
e p : ; - ini fert =/=> lea i im = there is an x € A wit x) =y}
o Ty 6 e e 5 6 2 ey (e 31, e e, minimal element existiert =/=> least el. existiert @ g(f) {.V € ( ) v}
is defined as follows: A st ca hoveseveal s dements and o st et Definition (Total function)
inner(0) = 0 - 7 = e e A (total) function f : A — B from set A to set B is a partial
. ) . o e el function from A to B such that f(x) is defined for all x & A.
inner((L, . R)) = inner(L) + inner(R) + 1 A =
Definition (Height of a Binary Tree) Definition (Total relation} Let f: A—= B and g: B - C be partial functions.
The I?eight of a binary tree B, written height( B), A binary relation R over set 5 is total (or connex) The composition of f and g is g o f : A+ C with
is defined as follows: if for all x.y € S at least one of xRy or yRx is true.
. . . g(f(x)) if f is defined for x and
I = Definition (Total order) ! :
height{Cl) =0 on | fotal C (g o f)(x) g is defined for f(x)

height((L, O, R)) = max{ height(L), height(R)} + 1 A binary relation is a total order if it is total and a partial order. iR e

order)

Prove by structural induction:

T S U Coresoonds o coon oo of e

" height(8) if = is irreflexive, asymmetric and transitive.
For all binary trees B. leaves(B) < 2M=EMiE) ) ) ) . i _ (Permutation)
;Sets, partial are reflexive and strict are irreflexive

A set is an unordered collection of distinct objects. u As partial orders, a strict order does not automatically One-line notation only lists the second row
- Speciﬁcation of sets allow us to rank arbitrary two objects against each other. A permutation is C\u'CHC if it has a single k—CVClE WiEhIk - 1.

Let S be a set. A bijection 7 : 5 — S is called a permutation of S

m Example 1 (personal preferences):
. 1

m explicit, listing all elements, e.g. A = {1.2,3} = “Pasta tastes better than potato” 1 2 3 4 5 /3 2 4 1 5B
. R . . 'R es better than bread i Lo i Y - J -1 —1_-1
m implicit with set-builder notation, . d tastes better than potato.” \3 2 4 1 5/ \1 2 3 4 5 (’,TI‘(J‘} =ad T
specifying a property characterizing all elements, = “Rice tastes better than potato.”
e A [x|xe My and1<x< 3} m This definition of “tastes better than” is a strict order.
K. Lx | & = o L. > 2 = No ranking of pasta against rice or of pasta against bread. x - b = a has exactly one solution x in S, namely x = a- b™1.
B ={n | nc My}
. .. . E m Example 2: C relation for sets .pL ight- i ite |
u implicit, as a sequence with dots, : ‘ ‘ ) ) We call a- b~ the right-quotient of a by b and also write it as a/b.
r m It doesn't work to simply require that the strict order is total. B B 1
eg Z=1{..,-2.-1,012.. .} Why? because we cannot compare two objects that are the same b-x = a has exactly one solution x in S, namely x = b™" - a.

= implicit with an inductive definition on (Tric] ) We call b1 - a the left-quotient of a by b and also write it as b\ a.

A binary relation R over set S is trichotomous if for all x,y € § -

exactly one of xRy, yRx or x = y s tre.
A generating set of a group G = (S,c)isaset S'C S

such that every e € S can be expressed as a combination (under o)
of finitely many elements of S' and their inverses.

Definition [Strict total order)

n (Equinum A binary relation < over S is a strict total order

Two sets A and B have the same cardinality (/4| = |B|) if < is trichotomous and a strict order.
if there exists a bijection from A to B. Definition (Least,/greatest /minimal/maximal element of a set) Empty product is identity by definition, so no need to have it in §'.
Such sets are called equinumerous. Let < be a strict order over set 5. ) ) 7

) o An element x € S is the least element of § m For n=2, S, is generated by {(/ i+1)[ig{1,..., n—1}},
A set A is countably infinite if |A| = [yl if for all y & 5 where y # x it holds that x < . w For n32, S, is generated by {(1 2),(1 ... n)}

It is the greatest element of S if for all y € S where y # x, ¥ < x.

Definition (Permutation Group)

Element x € S is a minimal element of §

A set A is countable if |A| < |Mp.

Theorem ( 's Theorem) if there is no v € § with y < x. A permutation group is a group G = (S, ),
. .y It is 2 maximal elsment of S where S is a set of permutations of some set M and
For every set S ’? ho!afsrthat IS| < P(S)I. if there is no y € S with x < y. - is the composition of permutations in S.
u Consider an arbitrary finite set of symbols (an alphabet) . Si.....5 Then RUR is a relation over 51 US., ... 5, LS.,

= You can think of ¥ = {0,1} = Let R and R’ be relations over n sets. Every permutation group is a subgroup of a symmetric group and

as internally computers operate on binary representation. Then R R'is a relation. every such subgroup is a permutation group.
Over which sets? (xL..xn)in R intersection R

m Let S be the set of all finite strings made from symbols in . With the standard relations <. — and > for Fo, Divisibility | over My is a partial order.
m There are at most |'S| computer prograrns vaith this alphabet. relation = corresponds to the intersection of < and = a=gb+r and 0 < r < ‘b|
m There are at least |P(S)| problems with this alphabet. u If R is a relation over Sy.....S, .

u every subset of § corresponds to a separate decision problem then so is the complementary relation £ = (5 % -+ % 5o} \ R. ma=18b= -5 18=-3*5+3

n By Cantor's theorem | 5| < |P(5)], L 1, AV | e X
& S - Sl | -

so there are more problems than programs. fo - L= fea)y |
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Definition (Congruence modulo n)

For integer n > 1, two integers a and b
are called congruent modulo nif n| a— b.

We write this as 2 = b (mod n).
0=5 (mod 5)

For integers a and b and integer n = 1 it holds that
a= b (mod n) iff there are q,q', r € Z with

a=qn+r
b=g'n+r.

Congruence modulo n is an equivalence relation.

Congruence modulo n is compatible with addition, subtraction,
multiplication, translation, scaling and exponentiation, i. e.
ifa=b (mod n) and 3 = b’ (mod n) then
mat+a=b+b (modn),
a—a =b—b (mod n),
aa' = bb' (mod n),
a+k=b+k (mod n) for all k € Z,
ak = bk (mod n) for all k € Z, and
a* = bk (mod n) for all k € Ny.

em (Fermat's Little The

If a € Z is not a multiple of prime number p
then a°~1 =1 (mod p).

Find the remainder when dividing 419999 by 67.

67 is prime and 4 is not a multiple of 67,

so we can use the theorem.

By the theorem, 4%° =1 (mod 67). How does this help?

Raise both sides to a higher power.

100000/66 = 1515.15  — use 1515

(496)1515 = 11515 (mod 67) iff

499990 = 1 (mod 67) iff

410499990 = 410 (mod 67) iff (calculator)
4100000 = 26 (mod 67)

A graph (also: undirected graph) is a pair G = (V. E), where
m V is a finite set called the set of vertices, and
m EC {{u.v}C V|u#v}iscalled the set of edges.

Definition (Directed Graph)

A directed graph (also: digraph) is a pair G = (N, A), where
m N is a finite set called the set of nodes, and
m AC N x Nis called the set of arcs.

= A directed graph (N, A) is essentially identical to
(= contains the same information as)
an arbitrary relation R4 over the finite set N:
uRAviff (u,v)E A
m A graph (V, E) is essentially identical to
an irreflexive symmetric relation Re over the finite set V:
uRgviff {u,v} € E

Definition (Graph Terminology)

Let (V. E) be a graph.

= u and v are the endpoints of the edge {u,v} € E

m v and v are incident to the edge {u, v} € E

m v and v are adjacent if {u,v} € E

m the vertices adjacent with v € V are its neighbours neigh(v):
neigh(v) = {we V| {v.w} € E}

= the number of neighbours of v € V is its degree deg(v):
deg(v) = |neigh(v)|

Definition (Directed Graph Terminc

Let (N, A) be a directed graph.

m u is the tail and v is the head of the arc (uv.v) € A;
we say (v, v) is an arc from v to v

® v and v are incident to the are (u,v) € A

® U is a predecessor of v and v is a successor of u if (u,v) € A

u the predecessors and successor of v are written as
pred(v) = {u € N | (u,v) € A} and
succ(v) = {w € N | (v.w) € A}

= the number of predecessors/successors of v € N is its
indegree foutdegree: indeg(v) = |pred(v)|,
outdeg(v) = [suce(v)|

aph induced by a directed graph)

Definition (undirec!

Let G = (N, A) be a directed graph.
The (undirected) graph induced by G is the graph (N, E) with
E = {{u1v} | (u_ v) cAu 34 v}_“fergettinglhe orientation of the arcs”

u Why require u # v? no self-loops
n <=m
u If [N| = nand |A| = m, how many vertices and edges
does the induced graph have? all self-loops disappear

u How does the answer change if G has no self-loops?
then the induced graph again has <= m and == m/2 edges
2 different arcs between the same two points become the same edge
in the undirected graph

Lemma (degree lemma for directed graphs)

Let (N, A) be a directed graph.
Then ¥ . indeg(v) = ¥, outdeg(v) = |A|.

Intuitively: every arc contributes 1 to the indegree of one node and
1 to the outdegree of one node.

Lemma (degree lemma for undirected graphs)

Let (V. E) be a graph.
Then 3",y deg(v) = 2|E|.

Intuitively: every edge contributes 1 to the degree of two vertices.

Corollary

Every graph has an even number of vertices with odd degree.

because sum of degrees = 2 |E| which is even, hence we need an even number
of odd degree terms to arrive at an even total sum

Proof of degree lemma for directed graphs.

S indeg(v) = Y [pred(v)|

vel veN "
allu s.t. (uyv) is an arc

=3 Hulu€ N (uv) €A}

veN

= ZH(“-VHUEN.(U.V)EA]\

vel

%U[(u‘v) |ue N, (uv) €A}
veN

= |{{v.v)|ue N, ve N (uv)e A}
—|A|.

3. onoutdeg(v) = |A| is analogous.

We omit the proof for undirected graphs,
which can be conducted similarly.
One possible proof strategy that reuses the result we proved:
u Define directed graph (V. A) from the graph (V, E)
by orienting each edge into an arc arbitrarily.
m Observe deg(v) = indeg(v) + outdeg(v), where deg refers to
the graph and indeg/outdeg to the directed graph.
= Use the degree lemma for directed graphs:
Yoev deg(v) = 3, o (indeg(v) + outdeg(v)) =
Y evindeg(v) 4+ 37, oy outdeg(v) = [A| + |A] = 2/ A| = 2|E|

Definition (Walk)

A walk of length nin a graph (V. E) is a tuple

A walk of length nin a digraph (N. A) is a tuple
(Vos Ve, ooy Vo) € N"TL st (v vip1) EAforall 0 < i < n.

n+l
u The length of the walk does not equal the length of the tuple!
u The case n = 0 is allowed. single vertex is always a walk
u Vertices may repeat along a walk.

Let ™ = (vp,...,vn) be a walk in a graph or digraph G.
m We say 7 is a walk from vy to v,.
m A walk with v; # v; forall 0 < i < j < nis called a path.
u A walk of length 0 is called an empty walk/path.
m A walk with vy = v, is called a tour.

m A tour with n = 1 (digraphs) or n = 3 (graphs)
and v; # v; forall 1 </ < j < nis called a cycle.

Definition (successor and reachability)

Let G be a graph (digraph).
The successor relation Sg and reachability relation Rg
are relations over the vertices/nodes of G defined as follows:

® (u,v) € Sg iff {v, v} is an edge ((uv, v) is an arc) of G
m (u,v) € Rg iff there exists a walk from u to v

If (u,v) € Re, we say that v is reachable from u.

Recall the n-fold compesition R" of a relation R over set 5:
= R'=R
= R =RoR"
also: R® = {(x.,x) | x € 5§} (0-fold composition is identity relation)

Let G be a graph or digraph. Then:
(u.v) € SE iff there exists a walk of length n from u to v.
netpowerorme

Teaton
Corollary

Let G be a graph or digraph. Then Rg = |72, SE.

In other words, the reachability relation is the reflexive and
transitive closure of the successor relation,

Let G be a graph or digraph.
There exists a path from v to v iff there exists a walk from v to v.

Proof,
(=+): obvious because paths are special cases of walks

(=): Proof by contradiction. Assume there exist u, v such that

there exists a walk from v to v, but no path. Let m# = (wp, ..., wy)
be such a counterexample walk of minimal length.

Because m is not a path, some vertex/node must repeat.

Select 7 and j with 7 < j and w; = w;.

Then 7' = (W, ..., wj, Wji1,. .., wy) also is a walk from v to v.

If 7 is a path, we have a contradiction.

If not, it is a shorter counterexample: also a contradiction. (m}

For every graph G, the reachability relation R
is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

components, connected)

etinition (c

In a graph G, the equivalence classes

of the reachability relation of G

are called the connected components of G.

A graph is called connected if it has at most 1
connected component.

Remark: The graph (0,00} has 0 connected components.
It is the only such graph.

Definition (weakly connected components, weakly connected

In a digraph G, the equivalence classes

of the reachability relation of the induced graph of G
are called the weakly connected components of G.

A digraph is called weakly connected if it has at most 1
weakly connected component.

Definition (mutually reachable)

Let G be a graph or digraph.

Vertices/nodes v and v in G are called mutually reachable
if v is reachable from v and v is reachable from v.

We write Mg for the mutual reachability relation of G

For every digraph G, the mutual reachability relation Mg
is an equivalence relation.

sly connected]

connected compo

Definition (strong
In a digraph G, the equivalence classes

of the mutual reachability relation

are called the strongly connected components of G.

A digraph is called strongly connected if it has at most 1
strongly connected component.

Definition (acyclic, forest, DAG)

A graph or digraph G is called acyclic if there exists no cycle in G.

An acyclic graph is also called a forest.
An acyclic digraph is also called a DAG (directed acyclic graph).

Definition (tree)

A connected forest is called a tree.

rooted tree with root F

(O—)
0.
© ®
tree graph
Let G = (V,E) be a graph.

Then G is a tree iff there exists exactly one path
from any vertex u € V to any vertex v € V.

Definition

Let G = (V,E) be a tree.
A leaf of G is a vertex v € V with deg(v) = 1.

Let G = (V.E) be a tree with |V| = 2.
Then G has at least two leaves.

Theorem

Let G = (V.E) be a tree with V # §.
Then |E| = |V]|—1.
Let G =(V,E) be a forest.

Let C be the set of connected components of G.
Then |E| = |V|—|C]|.

This result generalizes the previous one.
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Let G = (V.E) be a graph with V # 0.
The following statements are equivalent:
Q G is a tree.
@ G is acyclic and connected.
@ G is acyclic and |E| = |V| - 1.
@ G is connected and |E| = |V/| — 1.
@ Forall u.v € V there exists exactly one path from u to v.

A subgraph of a graph (V. E) is a graph (V', E")
with V' € V and E' C E.

A subgraph of a digraph (N, A) is a digraph (N, A")
with N' € N and A" C A,

Question: Can we choose V' and E' arbitrarily?
no: if | remove some of the vertices and keep edges that were attached...

The subgraph relationship defines a partial order on graphs
{and on digraphs).

Definition (induced subgraph)

Let G = (V,E) be a graph, and let V' C V.

The subgraph of G induced by V' is the graph (V', E')

with E' = {{u.v} € E|u,v e V')

We say that G’ is an induced subgraph of G = (V, E) if G' is
the subgraph of G induced by V' for any set of vertices V' C V.

completely analogous

Definition (induced subgraph)

Let G = (N, A) be a digraph, and let N' T N,

The subgraph of G induced by N’ is the digraph (N', A)

with A" = {(u.v) € A|u,v e N'}.

We say that G’ is an induced subgraph of G = (N, A) if G' is
the subgraph of G induced by N' for any set of nodes N' C .

u They are the largest (in terms of the set of edges) subgraphs
with any given set of vertices.
= A typical example are subgraphs induced by
the connected components of a graph.
= The subgraphs induced by the connected components
of a forest are trees.
m How many subgraphs does a graph (V, £) have?

m How many induced subgraph does a graph (V, E) have?

For the second question, the answer is 2!V,
The first question is in general not easy to answer because
vertices and edges of a subgraph cannot be chosen independently.

a complete graph)

Example (subgraphs o

A complete graph with n vertices (i.e., with all possible (3) edges)
has 374 4 (4)2 2(3) subgraphs. (Why7)
10: 1024 induced subgraphs, 35883905263781 subgraphs

Let G = (V,E) and G' = (V', E’) be graphs.

An isomorphism from G to G' is a bijective function
a: V — V' such that for all u,v € V:

for n

{u,v} € E iff {o(u),o(v)} € E".

If there exists an isomorphism from G to G',
we say that they are isomorphic, in symbols G = G'.
graph invariant,

m examples: number of vertices, number of edges,
maximum,/minimum degree, sorted sequence of all degrees,
number of connected components

® Having a cycle of a given length is an invariant.

u An isomorphism & between a graph G and itself
is called an automorphism or symmetry of G.

rotation, reflection

The complete graph K The complete bipartite graph K33

they are the smallest non-planar graphs.
a graph is planar iff it does not contain Ks or K3 3.

Edge Contraction

We say that G’ = (V' E") can be obtained from graph G
by contracting the edge {u.v} € E if
w V' = (V' {uv})U{uv}, where uv ¢ V is a new vertex
m E'={ecE|en{uv}=0}u
{{uv.w} | {v,w} € Eor{v,w} e E}.

(V.E)

Definition (minor)

We say that a graph G’ is a minor of a graph G
if it can be obtained from G through a sequence
of transformations of the following kind:

@ remove a vertex (of degree 0) from the graph

@ remove an edge from the graph

@ contract an edge in the graph

Notes:
u If we only allowed the first two transformations,
we would obtain the regular subgraph relationship.

w It follows that every subgraph is a minor,
but the opposite is not true in general.

Theorem (Wagner's Theorem)

A graph is planar iff it does not contain Ks or K33 as a minor.
Theorem (Graph minor theorem)
Let N be a minor-hereditary properties of graphs.

Then there exists a finite set of forbidden minors F(I)
such that the following result holds:

A graph has property I iff it does not have any graph
from F(M) as a minor.
u the forbidden minors for planarity are Ks and K33

u the (only) forbidden minor for acyclicity is K3,

l-";‘z =i+1

W =(1-¢)"

=1-2p+¢?
=1-2p+yp+1
=l-9p+1
=(1-y)+1
=¢¥+1

Definition (power s

Let (a,)ncm, be a sequence of real numbers.
The power series with coefficients (a,) is the (possibly partial)
function g : & — R defined by

=
gx) =) anx"
n=0

Definition (generating function)

for all x € .

Let f : Mg — I be a function over the natural numbers.
The generating function for f is the power series
with coefficients (f(n))net,.

Idea: partial fraction decomposltion. i.e.,
find a, b, ax, 5 such that h(x) = 2= + =5

rb:

Let S be a finite set with n elements, and let k € {0,..., n}.
Then S has (})) subsets of size k, where

(-
(0
>

1

n—1 n—1
=21,
( « )+(k—1) forallnz10<k<n

Closed-form solution

Definition (binary tree)
A binary tree is inductively defined as a tuple of the following form:
= The empty tree () is a binary tree.

Such a tree is called a leaf.

m If L and R are binary trees, then (L. R) is a binary tree.
Such a tree is called an inner node
with left child L and right child R.

(L,R) and (R, L) are different trees (unless L = R)
There are C(n) binary trees with n+ 1 leaves, where

Catalan numbers

c(o)=1
n—1

C(n) =Y _ C(KC(n—k—1) foralln =1
k=0

Closed-form solution (without proof):

0
1
F(n) = F(n— 1)+ F(n - 2) foralln=2
The number _
14 Vb ];vllf — —l
(> 2 @

is called the golden ratio.

Theorem

1 ((1+v8\" [1-+5
w3 ((59)-(59)

:%(¢”_L") for alf n = 0
P=1-¢p W =p+1
,1=V5 o 1
L ( ):4-(14'\@)2
_141-1-+5 A
a 2 1”2‘/5*5)
_2-(1+5) 1 4
e e— :Z(2+2‘/§+4):Z(2+2‘/§)+3
2 1+6 1
2 2 :5(”‘@)*1

¥ =p+1

Definition (O, Q, ©)

Let g : Ry — R be a function.
The sets of functions O(g). Q(g), ©(g) are defined as follows:
m O(g) = {f : R — R | there exist C,mg € R

st. |f(n)] < C - g(n) for all n > ng}
n Qg)={f Ry - R |thereexist C,mpe R

s.t. |[f(n)] = C-g(n) for all n = ng}

= ©(g) = O(g) N Ag)

@ Construct A smaller inputs of size n/B.
@ Recursively solve these inputs using the same algorithm.
@ Compute the result from the recursively computed results.

If 1.4-3. take time f(n), the overall run-time for n > C
can be expressed as T(n) = A- T(n/B) + f(n).

we have n/2 sets

] Mcrgcsort A=2 B=2 f(n)=9(n)
m Binary Search: A=1, B=2, f(n) = &(1)

Theorem

Let A>1,B > 1, and let T satisfy the divide-and-conquer
recurrence T(n) = A- T(n/B) + f(n). Then:
u If f(n) = O(n"88 A=) for some ¢ > 0,
then T(n) = ©(n'8s4).
m If f(n) =©(n'°8s4),
then T(n) = ©(n'°8s A log, n).
u If f(n) =@(n'°88 A+%) for some = > 0,
then T(n) = ©(f(n)).
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Definitien (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositiona
formulas (over A) is inductively defined as follows:
u Every atom a € A is a propositional formula over A.
u If @ is a propositional formula over A,
then so is its negation —.
w If © and v are propositional formulas over A,
then so is the conjunction (A 1),
w If @ and o are propositional formulas over A,
then so is the disjunction (¢ v ).

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic
propositions A is a function 7 : A — {0.1}.

A propositional formula i (over A) holds under 7
(written as T |= ») according to the following definition:

| satisfies phi
IkEa ifft I(a)=1 (for a e A)
Ik~ iff notZ ¢
IE(pnw) iff TEpandIl=vy
IE(pVy) ff TEpoIkEy

T = we also say T is a model of

{DrinkBeer, EatFish, EatlceCream}
{DrinkBeer ~ 1, EatFish ++ 0, EatlceCream ++ 1}
¢ = (—DrinkBeer — EatFish)

A=
I=

This means that if we want to prove T = ¢, it is sufficient to prove
T = —=DrinkBeer

or to prove
T |= EatFish.

Proof that T |= (=DrinkBeer — EatFish):

@ We have T |= DrinkBeer
(uses defn. of |= for atomic props. and fact
Z(DrinkBeer) = 1).

@ From (1), we get 7 = —DrinkBeer
(uses defn. of = for negations).

@ From (2), we get T |= —=—DrinkBeer
(uses defn. of = for negations).

@ From (3), we get T |= (——DrinkBeer v 1) for all formulas v,
in particular T |= (—=—DrinkBeer v EatFish)
(uses defn. of |= for disjunctions).

@ From (4), we get T |= (~DrinkBeer — EatFish)
(uses defn. of “").

Definition (Equivalence of Propositional Formulas)

Two propositional formulas ¢ and 1 over A are (logically)
equivalent (p = ¢) if for all interpretations Z for A
it is true that Z =  if and only if Z = .

(absorption) (tautologv rules)

(eA(evd)) = (v 1h) = ¢ if  tautology
(evignrd)) =e

(unsatisfiability rules)

(@ M) = o if © tautology

(@ 10) = o if 2 unsatisfiable
(@ M) = g if ¢ unsatisfiable
u Placement of parentheses for a conjunction of conjunctions
does not influence whether an interpretation is a model.
u ditto for disjunctions of disjunctions
m 1 binds more strongly than A
m /A binds more strongly than Vv
m % binds more strongly than — or «»

= M\ cp is a tautology.
[] V-,:E&J # is unsatisfiable.
" Avetg = Voer # =X
m A literal is an atomic proposition

or the negation of an atomic propesition (e g., A and ~A).

u A clause is a disiunction of literals
= A monomial is a conjunction of literals

The terms clause and monomial are also used for the corner case
with only one literal.

((P v —Q) A P) is neither literal nor clause nor monomial
» P is a literal, a clause and a monomial

» (P — Q) is neither literal nor clause nor monomial
(but (=P v Q) is a clausel)

= (P P)is a clause, but not a literal or monomial
u =P is neither literal nor clause nor monomial

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF)
if it is a conjunction of clauses, i.e., if it has the form

. ™
AV L
i=1j=1

with n,m; = 0 (for 1 < i < n), where the L;; are literals.

inition (Disjun )
A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i.e., if it has the form

n

VAL

il
with n,m; > 0 (for 1 < i < n), where the L; are literals.

m ((PV=Q) = P) hot cNF, not DNF

= PenEor DNF, we can think of it as
conjunction or disjunction of 1 element

P » Qis another example which is both: CNF and DNF

Q@ Replace abbreviations — and <+ by their definitions
((—+)-elimination and (++)-elimination).
~= formula structure: only V, A, -

@ Move negations inside using De Morgan and double negation.
~+ formula structure: only Vv, A, literals

© Distribute \V over A with distr utivity
(strictly speaking also with co/ \mutativity).
~ formula structure: CNF

@ optionally: Simplify the formula at the end
or at intermediate steps (e. g., with idempotence).

Algorithm to Construct CNF

Note: For DNF, distribute A over V instead.

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A,
i.e., a set of propesitional formulas over A.

A truth assignment T for A is a model for KB (written: T |- KB)
if T is a model for every formula ¢ € KB.

Definition (Logical Cons

Let KB be a set of formulas and  a formula.

We say that KB logically implies ¢ (written as KB |= )
if all models of KB are also models of .

also: KB logically entails ¢, ¢ logically follows from KB,
@ is a logical consequence of KB

[= is “overloaded”: KB |- o vs. T

<|KB implies phi Iis a model of phi

unsatisfiable KB implies everything
empty KB is tautology

Let » = DrinkBeer and

KB = {(~DrinkBeer — EatFish).
((EatFish A DrinkBeer) — ~EatlceCream).
((EatlceCream v ~DrinkBeer) — —EatFish)}.
jmplies

Show: KB =y

Proof by contradiction: assume I |= KB, but I = DrinkBeer.
Then it follows that Z = —DrinkBeer.

Because 7 is a model of KB, we also have

T &= (—DrinkBeer — EatFish) and thus T |= EatFish. (Why?)
With an analegous argumentation starting from

I = ((EatlceCream Vv —DrinkBeer) — —EatFish)

we get T |= —EatFish and thus T [ EatFish. ~ Contradiction!

Theorem (Deduction Theorem)

KBU {9} k= v i KB = (¢ = v)

German: Deduktionssatz

Theorem (Contraposition Theorem)

KB U {p} = - iff KBU {v'} =

German: Kontrapositionssatz

Theorem (Contradiction Theorem)

KB U {} is unsatisfiable iff KB |= -y

m Inference rules have the form

A derivation or proof of a formula ¢ from a knowledge base KB
is a sequence of formulas ¢4...., i with

w Y, =pand

wforallie{l,..., k}: o
hence psi_i must be deducible or given

w1 € KB, or
m 1; is the result of the application of an inference rule
to elements from {yn.... .t}

Definition (
We write KB - - if there is a derivation of ¢ from KB
in calculus C.

(If caleulus C is clear from context, also only KB - ¢2.)

and Compl Calculus)

A calculus C is correct if for all KB and
KB I-¢ i implies KB |= ¢.

A calculus C is complete if for all KB and ¢

KB =  implies KB k¢ .

efinition (Refutation-Completeness)

A calculus C is refutation-complete if KB ¢ O
for all unsatisfiable KB.
» Widerlegungsvollstandigkeit:

= Der RK ist widerlegungsvollstandig. D.h., ist die zu untersuchende
Formelmenge widersprichlich, so findet man den Widerspruch mit
einer endlichen Anzahl von Resolutionsschritten.

m Contradiction theorem:
KB U {} is unsatisfiable iff KB |= —¢
m This implies that KB |= ¢ iff KB U {—y} is unsatisfiable.
called resclution rule:
Cl o Cz !

where Cy and C; are (possibly empty) clauses and
X is an atomic proposition.

m X and =X are the resolution literals,
s G U{X}and G U {~X} are the parent clauses, and
m G U G is the resolvent.

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base A

is a sequence of clauses Cy, ..., C, with
n C,=D and
mforallie{l,...,n}
n GEA or

» G is resolvent of two clauses from {Cy,..., G 1}

If there is a proof of D by resolution from A, we say that
D can be derived with resolution from A and write A g D.

© Reduce logical consequence to unsatisfiability.
@ Transform knowledge base into clause form (CNF).
© Derive empty clause (] with resolution.

Step 1. Reduce logical consequence to unsatisfiability.
KB = (Rv 5) iff KBU {~(R Vv §)} is unsatisfiable.

Definition (Signature)

A signature (of predicate logic) is a 4-tuple § = {(V,C, F, P}
consisting of the following four disjoint sets:
m a finite or countable set V' of variable symbols
m a finite or countable set C of constant symbols
» a finite or countable set F of function symbols
m a finite or countable set P of predicate symbaols
(or relation symbals)

Every function symbol f € F and predicate symbol P € P
has an associated arity ar(f), ar(P) € N; (number of arguments).

Definition ( Term)

Let S = {V,C,F,P) be a signature.
A term (over S) is inductively constructed
according to the following rules:

u Every variable symbol v € V' is a term.
m Every constant symbol c € C is a term.

wif ty,..., t are terms and f € F is a function symbol
with arity k, then f(ty.. .., ty) is a term.

Definition (Formula)

For a signature & = {V,C, F, P} the set of predicate logic formulas
(over 8) is inductively defined as follows:

mifty,..., ti are terms (over ) and P € P is a k-ary predicate
symbol, then the atemic formula (or the atom) P(t, ..., ty)
is a formula over &.

u If t; and t; are terms (over &), then the identity (t; = t2)
is a formula over &.

m If x € Vis a variable symbol and i a formula over &,
then the universal quantification ¥Wx ¢
and the existential quantification JIx ¢ are formulas over &.

m If p is a formula over S, then so is its negation —z.

m If ¢ and 4 are formulas over S, then so are
the conjunction (¢ A v') and the disjunction (g Vv ).

Definition (Interpretation, Variable Assignment)
An interpretation (for S) is a pair Z = (U, %) of:
= a non-empty set U called the universe and
= a function - that assigns a meaning to the constant,
function, and predicate symbols:
w ¢ € U for constant symbols ¢ € C
m £ : UK 5 U for k-ary function symbols f € F
u P C U for k-ary predicate symbols P € P
A variable assignment (for 8§ and universe U)
is a function a : V — U. maps variable to objects
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