Mathematical Induction

Proof (of the truth) of proposition P(n)for all natural numbers n with $n \ge m$:

- basis: proof of P(m)
- induction hypothesis (IH): suppose that P(k) is true for all k with $m \le k \le n$
- inductive step: proof of P(n+1)using the induction hypothesis
- Weak induction: Induction hypothesis only supposes that P(k) is true for k = n
- Strong induction: Induction hypothesis supposes that P(k) is true for all $k \in \mathbb{N}_0$ with $m \le k \le n$
 - also: complete induction

Inductive Definition

A set M can be defined inductively by specifying

- basic elements that are contained in M
- construction rules of the form
- "Given some elements of M, another element of Mcan be constructed like this."

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):
- suppose that the statement is true for some elements M
- inductive step: proof of the statement for elements constructed by applying a construction rule to M(one inductive step for each construction rule)

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves(B), is defined as follows:

$$extit{leaves}(\Box) = 1 \\ extit{leaves}(\langle L, \bigcirc, R \rangle) = extit{leaves}(L) + extit{leaves}(R)$$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B), is defined as follows:

$$\begin{aligned} &\textit{inner}(\Box) = 0 \\ &\textit{inner}(\langle L, \bigcirc, R \rangle) = &\textit{inner}(L) + &\textit{inner}(R) + 1 \end{aligned}$$

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B), is defined as follows:

$$\begin{aligned} \textit{height}(\Box) &= 0 \\ \textit{height}(\langle \textit{L},\bigcirc,\textit{R} \rangle) &= \max\{\textit{height}(\textit{L}),\textit{height}(\textit{R})\} + 1 \end{aligned}$$

Prove by structural induction

Sets

For all binary trees B: $leaves(B) \le 2^{height(B)}$

A set is an unordered collection of distinct objects.

- Specification of sets
 - explicit, listing all elements, e. g. A = {1, 2, 3}
 - implicit with set-builder notation,
 - specifying a property characterizing all elements, e.g. $A = \{x \mid x \in \mathbb{N}_0 \text{ and } 1 \le x \le 3\},$ $B = \{n^2 \mid n \in \mathbb{N}_0\}$
 - implicit, as a sequence with dots,
 - e. g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
 - implicit with an inductive definition
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ and
- $\overline{A \cap B} = \overline{A} \cup \overline{B}.$

Definition (Equinumerous Sets)

Two sets A and B have the same cardinality (|A| = |B|)if there exists a bijection from A to B.

Such sets are called equinumerous.

A set A is countably infinite if $|A| = |\mathbb{N}_0|$.

A set A is countable if $|A| \leq |\mathbb{N}_0|$.

Theorem (Cantor's Theorem)

For every set S it holds that $|S| < |\mathcal{P}(S)|$.

- lacksquare Consider an arbitrary finite set of symbols (an alphabet) Σ .
- You can think of $\Sigma = \{0, 1\}$
- as internally computers operate on binary representation.
- Let S be the set of all finite strings made from symbols in ∑. ■ There are at most |S| computer programs with this alphabet.
- There are at least $|\mathcal{P}(S)|$ problems with this alphabet. every subset of S corresponds to a separate decision problem
- By Cantor's theorem |S| < |P(S)|,
 - so there are more problems than programs.

Definition (Relation)

Let S_1, \ldots, S_n be sets.

A relation over S_1, \ldots, S_n is a set $R \subseteq S_1 \times \cdots \times S_n$. The arity of R is n.

- A relation of arity n is a set of n-tuples.
- The set contains the tuples for which the informal property is true.
- reflexive: $(x,x) \in R$ for all $x \in S$
- irreflexive: $(x, x) \notin R$ for all $x \in S$
- symmetric: $(x,y) \in R$ iff $(y,x) \in R$ asymmetric: if $(x,y) \in R$ then $(y,x) \notin R$
- antisymmetric: if $(x, y) \in R$ then $(y, x) \notin R$ or x = y
- transitive: if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$

Irreflexivity => not reflexiv

contrapos: reflexiv => not irreflexiv

assymetry = Firreflexive assym => antisym

Definition (Partition)

A partition of a set S is a set $P \subseteq \mathcal{P}(S)$ such that

- $lacksquare X
 eq \emptyset$ for all $X \in P$, not contain empty set
- $\bigvee_{X\in P}X=S$, and every element of S must be in at le
- $X \cap Y = \emptyset$ for all $X, Y \in P$ with $X \neq Y$, every element in at mossubset of partition. The elements of P are called the blocks of the partition.

For $e \in S$ we denote by $[e]_P$ the block $X \in P$ such that $e \in X$.

Definition (Relation induced by a partition)

Let S be a set and P be a partition of S.

The relation \sim_P induced by P is the binary relation over S with

$$x \sim_P y \text{ iff } [x]_P = [y]_P.$$

- A relation is an equivalence relation if it is reflexive, symmetric and transitive.
- A partial order is reflexive, antisymmetric and transitive.
- With a total order \preceq over S there are no incomparable elements no elements $x,y \in S$ with $x \not\preceq y$ and $y \not\preceq x$.
- If x is the greatest element of a set S, it is greater than every element: for all $y \in S$ it holds that $y \leq x$.
- If x is a maximal element of set S then it is not smaller than any other element y: there is no $y \in S$ with $x \preceq y$ and $x \ne y$.

A set can have several minimal elements and no least element.

Rose(an), (a, b), (a, d), (a, d), (a, d), (b, d)}

Definition (Total relation) A binary relation R over set S is total (or coif for all $x, y \in S$ at least one of xRy or yRx is true.

Definition (Total order)

A binary relation is a total order if it is total and a partial order

Definition (Strict order)

A binary relation \prec over set S is a strict order if ≺ is irreflexive, asymmetric and transitive.

partial are reflexive and strict are irreflexive

- As partial orders, a strict order does not automatically allow us to rank arbitrary two objects against each other.
- Example 1 (personal preferences):
- "Pasta tastes better than potato."
 "Rice tastes better than potato."
 "Bread tastes better than potato."
 "Pasta "Rice tastes better than potato

 - This definition of "tastes better than" is a strict order.
 No ranking of pasta against rice or of pasta against bread
- Example 2:

 relation for sets
- It doesn't work to simply require that the strict order is total. Why? because we cannot compare two objects that are the same

inition (Trichotomy) A binary relation R over set S is trichotomous if for all $x, y \in S$

Definition (Strict total order)

A binary relation \prec over S is a strict total order if \prec is trichotomous and a strict order.

one of xRy, yRx or x = y is true.

$Definition \ (Least/greatest/minimal/maximal\ element\ of\ a\ set)$

An element $x \in S$ is the least element of Sfor all $y \in S$ where $y \neq x$ it holds that $x \prec y$ It is the greatest element of S if for all $y \in S$ where $y \neq x$, $y \prec x$.

Element $x \in S$ is a minimal element of S

if there is no $y \in S$ with $y \prec x$. It is a maximal element of Sif there is no $y \in S$ with $x \prec y$.

 S_1', \ldots, S_n' . Then $R \cup R'$ is a relation over $S_1 \cup S_1', \ldots, S_n \cup S_n'$. Let R and R' be relations over n sets.

Then $R \cap R'$ is a relation. Over which sets? (x1,...,xn) in R intersection R' With the standard relations \leq ,= and \geq for \mathbb{N}_0 , relation = corresponds to the intersection of \leq and \geq .

■ If R is a relation over S₁,...,S_n then so is the complementary relation $\bar{R} = (S_1 \times \cdots \times S_n) \setminus R$.

 $\frac{1}{[0,1]^{\frac{3}{2}}} \lim_{n \to \infty} \frac{(1,0)}{[0,1]^{\frac{3}{2}}} \lim_{n \to \infty} \frac{(0,1)^{\frac{3}{2}}}{[0,2]^{\frac{3}{2}}} \lim_{n \to \infty} \frac{(0,0)^{\frac{3}{2}}}{[0,2]^{\frac{3}{2}}} \lim_{n \to \infty$

The inverse relation of R is the relation $R^{-1} \subseteq B \times A$ given by $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$

Let R_1 be a relation over A and B and

 R_2 be a relation over B and C. The composition of R_1 and R_2 is the relation $R_2 \circ R_1$ with:

Theorem (Associativity of composition)

Let S_1, \ldots, S_4 be sets and R_1, R_2, R_3 relations with $R_i \subseteq S_i \times S_{i+1}$

$$R_3\circ (R_2\circ R_1)=(R_3\circ R_2)\circ R_1$$

Definition (Transitive closure)

The transitive closure R^* of a relation R over set S is the smallest relation over S that is transitive and has R as a subset.

.The transitive closure always exists. Why?

because SxS is trans and contains R R* is the intersection of all R in SxS

Define the i-th power of a homogeneous relation R as

$$R^1 = R$$
 if $i = 1$ and $R^i = R \circ R^{i-1}$ for $i > 1$

Let R be a relation over set S. Then $R^* = \bigcup_{i=1}^{\infty} R^i$

A binary relation R over sets A and B is functional

if for every $a \in A$ there is at most one $b \in B$ with $(a, b) \in R$.

Definition (Partial function)

A partial function f from set A to set B (written $f: A \longrightarrow B$) is given by a functional relation G over A and B. Relation G is called the graph of f.

Definition (domain of definition, codomain, image)

Let $f: A \rightarrow B$ be a partial function.

Set A is called the domain of f, set B is its codomain

The domain of definition of f is the set $dom(f) = \{x \in A \mid \text{there is a } y \in B \text{ with } f(x) = y\}.$

The image (or range) of f is the set $img(f) = \{y \mid \text{there is an } x \in A \text{ with } f(x) = y\}.$

Definition (Total function)

A (total) function $f: A \rightarrow B$ from set A to set B is a partial function from A to B such that f(x) is defined for all $x \in A$.

Definition (Composition of partial functions)

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be partial functions.

The composition of f and g is $g \circ f : A \rightarrow C$ with

$$(g \circ f)(x) = \begin{cases} g(f(x)) & \text{if } f \text{ is defined for } x \text{ and} \\ g \text{ is defined for } f(x) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Corresponds to relation composition of the graphs.

Definition (Permutation) Let S be a set. A bijection $\pi: S \to S$ is called a permutation of S

One-line notation only lists the second row

A permutation is cyclic if it has a single *k*-cycle with
$$k > 1$$
.
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 2 & 4 & 1 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} (\pi \sigma)^{-1} = \sigma^{-1} \pi^{-1}$$

 $x \cdot b = a$ has exactly one solution x in S, namely $x = a \cdot b^{-1}$.

We call $a \cdot b^{-1}$ the right-quotient of a by b and also write it as a/b.

 $b \cdot x = a$ has exactly one solution x in S, namely $x = b^{-1} \cdot a$. We call b^{-1} a the left-quotient of a by b and also write it as $b \setminus a$

A generating set of a group $G = (S, \circ)$ is a set $S' \subseteq S$

such that every $e \in S$ can be expressed as a combination (under \circ) of finitely many elements of S' and their inverses.

Empty product is identity by definition, so no need to have it in S'.

- For $n \ge 2$, S_n is generated by $\{(i \ i+1) \mid i \in \{1, ..., n-1\}\}$.
- For n > 2, S_n is generated by $\{(1 \ 2), (1 \ \dots \ n)\}$

Definition (Permutation Group)

A permutation group is a group $G = (S, \cdot)$, where S is a set of permutations of some set M and is the composition of permutations in S.

Every permutation group is a subgroup of a symmetric group and every such subgroup is a permutation group. Divisibility | over \mathbb{N}_0 is a partial order.

$$a = qb + r$$
 and $0 \le r < |b|$

a = 18, b = -5 18 = -3 * -5 + 3

Definition (Composition of relations)

Definition (Congruence modulo n)

For integer n > 1, two integers a and b are called congruent modulo n if $n \mid a - b$. We write this as $a \equiv b \pmod{n}$.

 $0 \equiv 5 \pmod{5}$

Theorem

For integers a and b and integer n > 1 it holds that $a \equiv b \pmod{n}$ iff there are $q, q', r \in \mathbb{Z}$ with

$$a = qn + r$$
$$b = q'n + r.$$

Theorem

Congruence modulo n is an equivalence relation.

Theorem

Congruence modulo n is compatible with addition, subtraction, multiplication, translation, scaling and exponentiation, i. e. if $a \equiv b \pmod{n}$ and $a' \equiv b' \pmod{n}$ then

- $a+a'\equiv b+b' \pmod n,$
- $a a' \equiv b b' \pmod{n},$
- $aa' \equiv bb' \pmod{n}$
- $a + k \equiv b + k \pmod{n}$ for all $k \in \mathbb{Z}$,
- $ak \equiv bk \pmod{n}$ for all $k \in \mathbb{Z}$, and
- $a^k \equiv b^k \pmod{n}$ for all $k \in \mathbb{N}_0$.

Theorem (Fermat's Little Theorem)

If $a \in \mathbb{Z}$ is not a multiple of prime number p then $a^{p-1} \equiv 1 \pmod{p}$.

Find the remainder when dividing 4100000 by 67.

67 is prime and 4 is not a multiple of 67, so we can use the theorem.

By the theorem, $4^{66} \equiv 1 \pmod{67}$. How does this help?

Raise both sides to a higher power. $100000/66 = 1515.\overline{15} \rightarrow \text{use } 1515$

 $(4^{66})^{1515} \equiv 1^{1515} \pmod{67}$ iff

 $4^{99990} \equiv 1 \pmod{67}$

 $4^{10}4^{99990} \equiv 4^{10} \pmod{67}$ iff (calculator)

 $4^{100000} \equiv 26 \pmod{67}$

Definition (Graph)

A graph (also: undirected graph) is a pair G = (V, E), where

- lacksquare V is a finite set called the set of vertices, and
- $E \subseteq \{\{u, v\} \subseteq V \mid u \neq v\}$ is called the set of edges.

Definition (Directed Graph)

A directed graph (also: digraph) is a pair G = (N, A), where

- N is a finite set called the set of nodes, and
- $A \subseteq N \times N$ is called the set of arcs.
- A directed graph (N, A) is essentially identical to (= contains the same information as) an arbitrary relation R_A over the finite set N: u R_A v iff (u, v) ∈ A
- A graph (V, E) is essentially identical to an irreflexive symmetric relation R_E over the finite set V: u R_E v iff {u, v} ∈ E

Definition (Graph Terminology)

Let (V, E) be a graph.

- u and v are the endpoints of the edge $\{u, v\} \in E$
- u and v are incident to the edge $\{u, v\} \in E$
- \blacksquare u and v are adjacent if $\{u, v\} \in E$
- the vertices adjacent with $v \in V$ are its neighbours neigh(v): neigh(v) = $\{w \in V \mid \{v, w\} \in E\}$
- the number of neighbours of $v \in V$ is its degree $\deg(v)$: $\deg(v) = |\operatorname{neigh}(v)|$

Definition (Directed Graph Terminology)

Let (N, A) be a directed graph.

- u is the tail and v is the head of the arc $(u, v) \in A$; we say (u, v) is an arc from u to v
- u and v are incident to the arc $(u, v) \in A$
- u is a predecessor of v and v is a successor of u if $(u, v) \in A$
- the predecessors and successor of v are written as $\operatorname{pred}(v) = \{u \in N \mid (u,v) \in A\}$ and $\operatorname{succ}(v) = \{w \in N \mid (v,w) \in A\}$
- the number of predecessors/successors of v ∈ N is its indegree/outdegree: indeg(v) = |pred(v)|, outdeg(v) = |succ(v)|

$Definition \ (undirected \ graph \ induced \ by \ a \ directed \ graph)$

Let G = (N, A) be a directed graph.

The (undirected) graph induced by G is the graph (N, E) with $E = \{\{u, v\} \mid (u, v) \in A, u \neq v\}$ forgetting the orientation of the arc.

- Why require $u \neq v$? no self-loops
- If |N| = n and |A| = m, how many vertices and edges does the induced graph have?

■ How does the answer change if G has no self-loops? then the induced graph again has <= m and >= m/2 edges 2 different arcs between the same two points become the same edge in the undirected graph

Lemma (degree lemma for directed graphs)

Let (N, A) be a directed graph.

Then $\sum_{v \in N} \operatorname{indeg}(v) = \sum_{v \in N} \operatorname{outdeg}(v) = |A|$.

Intuitively: every arc contributes ${\bf 1}$ to the indegree of one node and ${\bf 1}$ to the outdegree of one node.

Lemma (degree lemma for undirected graphs)

Let (V, E) be a graph.

Then $\sum_{v \in V} \deg(v) = 2|E|$.

Intuitively: every edge contributes 1 to the degree of two vertices.

Corollary

Every graph has an even number of vertices with odd degree.

because sum of degrees = 2 |E| which is even, hence we need an even number of odd degree terms to arrive at an even total sum

Proof of degree lemma for directed graphs.

$$\begin{split} \sum_{v \in N} \mathsf{indeg}(v) &= \sum_{v \in N} |\mathsf{pred}(v)| \\ &= \sum_{v \in N} |\{u \mid u \in N, (u, v) \text{ is an arc} \\ &= \sum_{v \in N} |\{(u, v) \mid u \in N, (u, v) \in A\}| \\ &= \sum_{v \in N} |\{(u, v) \mid u \in N, (u, v) \in A\}| \\ &= |\{(u, v) \mid u \in N, v \in N, (u, v) \in A\}| \\ &= |A|. \end{split}$$

 $\sum_{v \in N} \text{outdeg}(v) = |A| \text{ is analogous.}$

We omit the proof for undirected graphs, which can be conducted similarly.

One possible proof strategy that reuses the result we proved:

- Define directed graph (V, A) from the graph (V, E) by orienting each edge into an arc arbitrarily.
- Observe deg(v) = indeg(v) + outdeg(v), where deg refers to the graph and indeg/outdeg to the directed graph.
- Use the degree lemma for directed graphs: $\sum_{v \in V} \deg(v) = \sum_{v \in V} (\operatorname{indeg}(v) + \operatorname{outdeg}(v)) = \sum_{v \in V} \operatorname{indeg}(v) + \sum_{v \in V} \operatorname{outdeg}(v) = |A| + |A| = 2|A| = 2|E|$

Definition (Walk)

A walk of length n in a graph (V, E) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in V^{n+1}$ s.t. $\{v_i, v_{i+1}\} \in E$ for all $0 \le i < n$. A walk of length n in a digraph (N, A) is a tuple $\langle v_0, v_1, \ldots, v_n \rangle \in N^{n+1}$ s.t. $(v_i, v_{i+1}) \in A$ for all $0 \le i < n$.

- The length of the walk does not equal the length of the tuple!
- The case n = 0 is allowed. single vertex is always a walk
- Vertices may repeat along a walk.

Definition

Let $\pi = \langle v_0, \dots, v_n \rangle$ be a walk in a graph or digraph G.

- We say π is a walk from v_0 to v_n .
- A walk with $v_i \neq v_j$ for all $0 \leq i < j \leq n$ is called a path.
- A walk of length 0 is called an empty walk/path.
- A walk with $v_0 = v_n$ is called a tour.
- A tour with $n \ge 1$ (digraphs) or $n \ge 3$ (graphs) and $v_i \ne v_j$ for all $1 \le i < j \le n$ is called a cycle.

Definition (successor and reachability)

Let G be a graph (digraph).

The successor relation S_G and reachability relation R_G are relations over the vertices/nodes of G defined as follows:

- $(u, v) \in S_G$ iff $\{u, v\}$ is an edge ((u, v) is an arc) of G
- $(u, v) \in R_G$ iff there exists a walk from u to v

If $(u, v) \in R_G$, we say that v is reachable from u.

Recall the n-fold composition \mathbb{R}^n of a relation \mathbb{R} over set S:

- $R^1 = R$
- $R^{n+1} = R \circ R^n$

also: $R^0 = \{(x, x) \mid x \in S\}$ (0-fold composition is identity relation)

Theorem

Let G be a graph or digraph. Then: $(u,v) \in \mathbb{S}^n$ iff there exists a walk of

 $(u,v) \in S_G^n$ iff there exists a walk of length n from u to v. n-th power of the successor relation

Corollary

Let G be a graph or digraph. Then $R_G = \bigcup_{n=0}^{\infty} S_G^n$.

In other words, the reachability relation is the reflexive and transitive closure of the successor relation.

Let G be a graph or digraph.

There exists a path from u to v iff there exists a walk from u to v.

ot.

): obvious because paths are special cases of walks

(\Leftarrow): Proof by contradiction. Assume there exist u, v such that there exists a walk from u to v, but no path. Let $\pi = \langle w_0, \ldots, w_n \rangle$ be such a counterexample walk of minimal length. Because π is not a path, some vertex/node must repeat. Select i and j with i < j and $w_i = w_j$. Then $\pi' = \langle w_0, \ldots, w_i, w_{j+1}, \ldots, w_n \rangle$ also is a walk from u to v. If π' is a path, we have a contradiction.

Theorem

For every graph G, the reachability relation R_G is an equivalence relation.

In directed graphs, this result does not hold (easy to see).

Definition (connected components, connected)

In a graph G, the equivalence classes of the reachability relation of G

are called the connected components of G.

A graph is called connected if it has at most 1 connected component.

Remark: The graph (\emptyset, \emptyset) has 0 connected components. It is the only such graph.

Definition (weakly connected components, weakly connected)

In a digraph G, the equivalence classes of the reachability relation of the induced graph of G

are called the weakly connected components of *G*. A digraph is called weakly connected if it has at most 1 weakly connected component.

Definition (mutually reachable)

Let G be a graph or digraph.

Vertices/nodes u and v in G are called mutually reachable if v is reachable from u and u is reachable from v. We write M_G for the mutual reachability relation of G

Theoren

For every digraph G, the mutual reachability relation M_G is an equivalence relation.

Definition (strongly connected components, strongly connected)

In a $\frac{dig}{d}$ raph G, the equivalence classes

of the mutual reachability relation

are called the strongly connected components of *G*.

A digraph is called strongly connected if it has at most 1 strongly connected component.

Definition (acyclic, forest, DAG)

A graph or digraph G is called acyclic if there exists no cycle in G. An acyclic graph is also called a forest.

An acyclic digraph is also called a DAG (directed acyclic graph). Definition (tree)

A connected forest is called a tree.

tree graph

neorem

Let G = (V, E) be a graph. Then G is a tree iff there exists exactly one path from any vertex $u \in V$ to any vertex $v \in V$.

Definition

Let G = (V, E) be a tree.

A leaf of G is a vertex $v \in V$ with deg(v) = 1.

Theorem

Let G = (V, E) be a tree with $|V| \ge 2$. Then G has at least two leaves.

Theorem

Let G = (V, E) be a tree with $V \neq \emptyset$. Then |E| = |V| - 1.

Theorem

Let G = (V, E) be a forest.

Let C be the set of connected components of G. Then |E| = |V| - |C|.

This result generalizes the previous one.

Let G = (V, E) be a graph with $V \neq \emptyset$.

The following statements are equivalent:

- G is a tree.
- G is acyclic and connected.
- G is acyclic and |E| = |V| 1.
- G is connected and |E| = |V| 1.
- For all $u, v \in V$ there exists exactly one path from u to v.

Definition (subgraph)

A subgraph of a graph (V, E) is a graph (V', E')with $V' \subseteq V$ and $E' \subseteq E$.

A subgraph of a digraph (N, A) is a digraph (N', A')with $N' \subseteq N$ and $A' \subseteq A$.

Question: Can we choose V' and E' arbitrarily? The subgraph relationship defines a partial order on graphs (and on digraphs).

Definition (induced subgraph)

Let G = (V, E) be a graph, and let $V' \subseteq V$.

The subgraph of G induced by V' is the graph (V', E') with $E' = \{\{u, v\} \in E \mid u, v \in V'\}.$

We say that G' is an induced subgraph of G = (V, E) if G' is the subgraph of G induced by V' for any set of vertices $V' \subseteq V$. completely analogous

Definition (induced subgraph)

Let G = (N, A) be a digraph, and let $N' \subseteq N$. The subgraph of G induced by N' is the digraph (N', A')

with $A' = \{(u, v) \in A \mid u, v \in N'\}.$

We say that G' is an induced subgraph of G = (N, A) if G' is the subgraph of G induced by N' for any set of nodes $N' \subseteq N$.

- They are the largest (in terms of the set of edges) subgraphs with any given set of vertices.
- A typical example are subgraphs induced by the connected components of a graph
- The subgraphs induced by the connected components of a forest are trees.
- How many subgraphs does a graph (V, E) have?
- How many induced subgraph does a graph (V, E) have?

For the second question, the answer is $2^{|V|}$

The first question is in general not easy to answer because vertices and edges of a subgraph cannot be chosen independently.

Example (subgraphs of a complete graph)

A complete graph with n vertices (i.e., with all possible $\binom{n}{2}$ edges) has $\sum_{k=0}^{n} {n \choose k} 2^{{k \choose 2}}$ subgraphs. (Why?)

for n = 10: 1024 induced subgraphs, 35883905263781 subgraphs

Definition (Isomorphism)

Let G = (V, E) and G' = (V', E') be graphs.

An isomorphism from G to G' is a bijective function $\sigma: V \to V'$ such that for all $u, v \in V$:

$$\{u,v\} \in E \quad \text{iff} \quad \{\sigma(u),\sigma(v)\} \in E'.$$

If there exists an isomorphism from G to G', we say that they are isomorphic, in symbols $G \cong G'$.

graph invariant.

- examples: number of vertices, number of edges, maximum/minimum degree, sorted sequence of all degrees, number of connected components
- Having a cycle of a given length is an invariant.
- \blacksquare An isomorphism σ between a graph G and itself is called an automorphism or symmetry of G. rotation, reflection

The complete graph K_5 The complete bipartite graph $K_{3,3}$

they are the smallest non-planar graphs. a graph is planar iff it does not contain K_5 or $K_{3,3}$.

Edge Contraction

We say that G' = (V', E') can be obtained from graph G = (V, E)by contracting the edge $\{u, v\} \in E$ if

- $V' = (V \setminus \{u,v\}) \cup \{uv\}$, where $uv \notin V$ is a new vertex
- $\blacksquare E' = \{e \in E \mid e \cap \{u, v\} = \emptyset\} \cup$ $\{\{uv,w\} \mid \{u,w\} \in E \text{ or } \{v,w\} \in E\}.$

Definition (minor)

We say that a graph G' is a minor of a graph Gif it can be obtained from G through a sequence of transformations of the following kind:

- oremove a vertex (of degree 0) from the graph
- o remove an edge from the graph
- o contract an edge in the graph

- If we only allowed the first two transformations, we would obtain the regular subgraph relationship
- It follows that every subgraph is a m but the opposite is not true in general.

Theorem (Wagner's Theorem)

A graph is planar iff it does not contain K_5 or $K_{3,3}$ as a minor.

Theorem (Graph minor theorem)

Let Π be a minor-hereditary properties of graphs.

Then there exists a finite set of forbidden minors $F(\Pi)$ such that the following result holds:

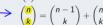
A graph has property Π iff it does not have any graph from $F(\Pi)$ as a minor.

- the forbidden minors for planarity are K₅ and K_{3,3}
- the (only) forbidden minor for acyclicity is K₃.

Let S be a finite set with n elements, and let $k \in \{0, ..., n\}$. Then S has $\binom{n}{k}$ subsets of size k, where

$$\binom{n}{0} = 1$$

$$\binom{n}{n} =$$



 $= \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{for all } n \ge 1, 0 < k < n$

$$\binom{n}{k} = \frac{n!}{k!(n-k)}$$

Definition (binary tree)

A binary tree is inductively defined as a tuple of the following form:

- The empty tree () is a binary tree. Such a tree is called a leaf
- If L and R are binary trees, then (L, R) is a binary tree. Such a tree is called an inner noc with left child L and right child R.

(L,R) and (R,L) are different trees (unless L=R)

Theorem

There are C(n) binary trees with n+1 leaves, where

Catalan numbers

$$C(n) = \sum_{k=0}^{n-1} C(k)C(n-k-1)$$

Closed-form solution (without proof):

$$C(n) = \frac{1}{n+1} \binom{2n}{n}$$

Definition (Fibonacci series)

The Fibonacci series F is defined as follows:

$$F(0) = 0$$

$$F(1) = 1$$

$$F(n) = F(n-1) + F(n-2)$$

for all n > 2

for all $n \ge 1$

The number

$$\varphi = \frac{1+\sqrt{5}}{2}$$

is called the golden ratio.

$$F(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$
$$= \frac{1}{2} \left(\omega^n - \psi^n \right)$$

$$= \frac{1}{\sqrt{5}} (\varphi^{n} - \psi^{n})$$

$$\psi = 1 - \varphi$$

$$\varphi^2 = \varphi + 3$$

$$\psi = \frac{1 - \sqrt{5}}{2}$$

$$= \frac{1 + 1 - 1 - \sqrt{5}}{2}$$

$$= \frac{2 - (1 + \sqrt{5})}{2}$$

$$\begin{split} \varphi^2 &= \left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1}{4}(1+\sqrt{5})^2 \\ &= \frac{1}{4}(1+2\sqrt{5}+5) \\ &= \frac{1}{4}(2+2\sqrt{5}+4) = \frac{1}{4}(2+2\sqrt{5}) + \frac{4}{4} \\ &= \frac{1}{2}(1+\sqrt{5}) + 1 \end{split}$$

$$\psi^2 = \psi + 1$$

$$\psi^{2} = (1 - \varphi)^{2}$$

$$= 1 - 2\varphi + \varphi^{2}$$

$$= 1 - 2\varphi + \varphi + 1$$

$$= 1 - \varphi + 1$$

$$= (1 - \varphi) + 1$$

$$= \psi + 1$$

Definition (power series)

Let $(a_n)_{n\in\mathbb{N}_0}$ be a sequence of real numbers.

The power series with coefficients (a_n) is the (possibly partial) function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \sum_{n=0}^{\infty} a_n x^n$$
 for all $x \in \mathbb{R}$.

Let $f: \mathbb{N}_0 \to \mathbb{R}$ be a function over the natural numbers. The generating function for f is the power series with coefficients $(f(n))_{n \in \mathbb{N}_0}$

Idea: partial fraction decomposition, i.e., find a, b, α, β such that $h(x) = \frac{a}{1-\alpha x} + \frac{b}{1-\beta x}$.

Definition (O, Ω, Θ)

Let $g: \mathbb{R}^+_0 \to \mathbb{R}$ be a function. The sets of functions $O(g), \Omega(g), \Theta(g)$ are defined as follows:

- $O(g) = \{f : \mathbb{R}_0^+ \to \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R} \}$
 - s.t. $|f(n)| \le C \cdot g(n)$ for all $n \ge n_0$
- $\Omega(g) = \{ f : \mathbb{R}_0^+ \to \mathbb{R} \mid \text{there exist } C, n_0 \in \mathbb{R} \}$ s.t. $|f(n)| \ge C \cdot g(n)$ for all $n \ge n_0$
- $\Theta(g) = O(g) \cap \Omega(g)$
 - Construct A smaller inputs of size n/B
 - Recursively solve these inputs using the same algorithm.
 - Compute the result from the recursively computed results.

If 1.+3. take time f(n), the overall run-time for n > Ccan be expressed as $T(n) = A \cdot T(n/B) + f(n)$

- we have n/2 sets

 Mergesort: A = 2, B = 2, $f(n) = \Theta(n)$
- Binary Search: A = 1, B = 2, $f(n) = \Theta(1)$

Let $A \ge 1, B \ge 1$, and let T satisfy the divide-and-conquer recurrence $T(n) = A \cdot T(n/B) + f(n)$. Then:

- If $f(n) = O(n^{\log_B A \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_B A})$.
- If $f(n) = \Theta(n^{\log_B A})$, then $T(n) = \Theta(n^{\log_B A} \log_2 n)$.
- If $f(n) = \Omega(n^{\log_B A + \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(f(n))$.

Definition (Syntax of Propositional Logic)

Let A be a set of atomic propositions. The set of propositional formulas (over A) is inductively defined as follows:

- Every atom $a \in A$ is a propositional formula over A.
- If φ is a propositional formula over A. then so is its negation -4
- If φ and ψ are propositional formulas over A, then so is the conjunction $(\varphi \wedge \psi)$.
- lacksquare If arphi and ψ are propositional formulas over A, then so is the disjunction $(\varphi \lor \psi)$.

Definition (Semantics of Propositional Logic)

A truth assignment (or interpretation) for a set of atomic propositions A is a function $\mathcal{I}: A \to \{0,1\}$.

A propositional formula φ (over A) holds under $\mathcal I$ (written as $\mathcal{I} \models \varphi$) according to the following definition:

$$\begin{array}{llll} \mathcal{I} \models \mathsf{a} & \text{iff} & \mathcal{I}(\mathsf{a}) = 1 \\ \mathcal{I} \models \neg \varphi & \text{iff} & \mathsf{not} \ \mathcal{I} \models \varphi \\ \mathcal{I} \models (\varphi \land \psi) & \text{iff} & \mathcal{I} \models \varphi \ \mathsf{and} \ \mathcal{I} \models \psi \\ \mathcal{I} \models (\varphi \lor \psi) & \text{iff} & \mathcal{I} \models \varphi \ \mathsf{or} \ \mathcal{I} \models \psi \end{array}$$

 $\mathcal{I} \models \varphi$ we also say \mathcal{I} is a model of φ

 $A = \{DrinkBeer, EatFish, EatIceCream\}$

 $\mathcal{I} = \{ \mathsf{DrinkBeer} \mapsto 1, \mathsf{EatFish} \mapsto 0, \mathsf{EatIceCream} \mapsto 1 \}$

 $\varphi = (\neg DrinkBeer \rightarrow EatFish)$

This means that if we want to prove $\mathcal{I} \models \varphi$, it is sufficient to prove

 $T \models \neg\neg \mathsf{DrinkBeer}$

or to prove

 $\mathcal{I} \models \mathsf{EatFish}$

Proof that $\mathcal{I} \models (\neg DrinkBeer \rightarrow EatFish)$:

- lacktriangle We have $\mathcal{I} \models \mathsf{DrinkBeer}$ (uses defn. of |= for atomic props. and fact I(DrinkBeer) = 1).
- From (1), we get I ≠ ¬DrinkBeer (uses defn. of ⊨ for negations).
- From (2), we get $\mathcal{I} \models \neg\neg \mathsf{DrinkBeer}$ (uses defn. of ⊨ for negations).
- From (3), we get $\mathcal{I} \models (\neg \neg \mathsf{DrinkBeer} \lor \psi)$ for all formulas ψ , in particular $\mathcal{I} \models (\neg\neg \mathsf{DrinkBeer} \lor \mathsf{EatFish})$ (uses defn. of \models for disjunctions).
- From (4), we get $\mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish})$ (uses defn. of " \rightarrow ").

Definition (Equivalence of Propositional Formulas)

Two propositional formulas φ and ψ over A are (logically) equivalent $(\varphi = \psi)$ if for all interpretations \mathcal{I} for Ait is true that $\mathcal{I}\models\varphi$ if and only if $\mathcal{I}\models\psi$.

(tautology rules) (absorption)

$$\begin{split} (\varphi \wedge (\varphi \vee \psi)) &\equiv \varphi & \qquad (\varphi \vee \psi) \equiv \varphi \text{ if } \varphi \text{ tautology} \\ (\varphi \vee (\varphi \wedge \psi)) &\equiv \varphi & \qquad (\varphi \wedge \psi) \equiv \psi \text{ if } \varphi \text{ tautology} \end{split}$$

(unsatisfiability rules)

$$(\varphi \lor \psi) \equiv \psi$$
 if φ unsatisfiable

$$(\varphi \wedge \psi) \equiv \varphi$$
 if φ unsatisfiable

- Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
 - ¬ binds more strongly than ∧
 - ∧ binds more strongly than ∨
 - \blacksquare \lor binds more strongly than \to or \leftrightarrow
- Λ_{ω∈∅} φ is a tautology.
- $\bigvee_{\varphi \in \emptyset} \varphi$ is unsatisfiable.
- - A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg A$).
 - A clause is a disjunction of literals
 - A monomial is a conjunction of literals

The terms clause and monomial are also used for the corner case with only one literal.

- \blacksquare $((P \lor \neg Q) \land P)$ is neither literal nor clause nor monomial
- ¬P is a literal, a clause and a monomial
- (P → Q) is neither literal nor clause nor monomial (but $(\neg P \lor Q)$ is a clause!)
- (P ∨ P) is a clause, but not a literal or monomial
- ¬¬P is neither literal nor clause nor monomial

Definition (Conjunctive Normal Form) A formula is in conjunctive normal form (CNF)

if it is a conjunction of clauses, i. e., if it has the form

$$\bigwedge_{i=1}^{n}\bigvee_{j=1}^{m_{i}}L_{ij}$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ij} are literals.

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF) if it is a disjunction of monomials, i. e., if it has the form

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} L_{ij}$$

with $n, m_i > 0$ (for $1 \le i \le n$), where the L_{ii} are literals.

- \blacksquare ((P $\lor \neg Q$) \to P) $_{not\ CNF,\ not\ DNF}$
- P CNF or DNF, we can think of it as conjunction or disjunction of 1 element
- P A Q is another example which is both: CNF and DNF

Algorithm to Construct CNF

- $\bullet \ \ \, \mathsf{Replace} \ \, \mathsf{abbreviations} \, \to \, \mathsf{and} \, \leftrightarrow \, \mathsf{by} \, \, \mathsf{their} \, \, \mathsf{definitions} \, \,$ ((\rightarrow)-elimination and (\leftrightarrow)-elimination).
 - → formula structure: only ∨, ∧, ¬
- Move negations inside using De Morgan and double negation. → formula structure: only ∨, ∧, literals
- Distribute
 vover ∧ with distributivity (strictly speaking also with commutativity). → formula structure: CNF
- optionally: Simplify the formula at the end or at intermediate steps (e.g., with idempotence).

Note: For DNF, distribute <mark>∧ over ∨</mark> instead.

Definition (Model for Knowledge Base)

Let KB be a knowledge base over A, i.e., a set of propositional formulas over A.

A truth assignment \mathcal{I} for A is a model for KB (written: $\mathcal{I} \models KB$) if $\mathcal I$ is a model for every formula $\varphi \in \mathsf{KB}$.

Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.

We say that KB logically implies φ (written as KB $\models \varphi$) if all models of KB are also models of φ .

also: KB logically entails φ , φ logically follows from KB, φ is a logical consequence of KB

unsatisfiable KB implies everything empty KB is tautology

Let $\varphi = DrinkBeer$ and

$$\begin{split} \mathsf{KB} &= \{ (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}), \\ &\quad ((\mathsf{EatFish} \land \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatIceCream}), \\ &\quad ((\mathsf{EatIceCream} \lor \neg \mathsf{DrinkBeer}) \rightarrow \neg \mathsf{EatFish}) \}. \end{split}$$

Show: $KB \models \varphi$

Proof sketch.

assume $\mathcal{I} \models \mathsf{KB}$, but $\mathcal{I} \not\models \mathsf{DrinkBeer}$. Then it follows that $\mathcal{I} \models \neg \mathsf{DrinkBeer}$. Because $\ensuremath{\mathcal{I}}$ is a model of KB, we also have $\mathcal{I} \models (\neg \mathsf{DrinkBeer} \rightarrow \mathsf{EatFish}) \text{ and thus } \mathcal{I} \models \mathsf{EatFish}. \text{ (Why?)}$ With an analogous argumentation starting from $\mathcal{I}\models((\mathsf{EatlceCream}\,\vee\,\neg\mathsf{DrinkBeer})\,\rightarrow\,\neg\mathsf{EatFish})$ we get $\mathcal{I}\models\neg\mathsf{EatFish}$ and thus $\mathcal{I}\not\models\mathsf{EatFish}$. \leadsto

Theorem (Deduction Theorem)

$$\mathsf{KB} \cup \{\varphi\} \models \psi \; \mathit{iff} \, \mathsf{KB} \models (\varphi \to \psi)$$

German: Deduktionssatz

Theorem (Contraposition Theorem)

 $\mathsf{KB} \cup \{\varphi\} \models \neg \psi \text{ iff } \mathsf{KB} \cup \{\psi\} \models \neg \varphi$ swap the roles of phi and psi German: Kontrapositionssatz

Theorem (Contradiction Theorem)

 $KB \cup \{\varphi\}$ is unsatisfiable iff $KB \models \neg \varphi$

Inference rules have the form

 $\varphi_1, \dots, \varphi_k$

Definition (Derivation)

A derivation or proof of a formula φ from a knowledge base KB is a sequence of formulas ψ_1,\ldots,ψ_k with

- $= \varphi$ and for all $i \in \{1, \dots, k\}$: hence psi_i must be deducible or given
 - $\psi_i \in KB$, or hence psi_i must be deducible or give ψ_i is the result of the application of an inference rule

to elements from $\{\psi_1,\ldots,\psi_{i-1}\}.$

Definition (Correctness and Completeness of a Calculus) We write $\overline{\mathsf{KB}} \vdash_{\mathcal{C}} \varphi$ if there is a derivation of φ from $\overline{\mathsf{KB}}$ in calculus C.

(If calculus C is clear from context, also only $\mathsf{KB} \vdash \varphi$.)

A calculus C is correct if for all KB and φ $\begin{tabular}{ll} {\sf KB} \vdash_{\cal C} \varphi \mbox{ implies KB} \models \varphi. \\ \hline \\ {\sf A calculus } {\cal C \mbox{ is complete}} \mbox{ if for all KB and } \varphi \\ \hline \end{tabular}$

 $KB \models \varphi \text{ implies } KB \vdash_{\mathcal{C}} \varphi.$

Definition (Refutation-Completeness)

A calculus C is refutation-complete if $KB \vdash_C \Box$ for all unsatisfiable KB.

- Widerlegungsvollständigkeit:
- Der RK ist widerlegungsvollständig. D.h., ist die zu untersuchende Formelmenge widersprüchlich, so findet man den Widerspruch mit einer endlichen Anzahl von Resolutionsschritten
- Contradiction theorem:

 $\mathsf{KB} \cup \{\varphi\} \text{ is unsatisfiable iff } \mathsf{KB} \models \neg \varphi$

 This implies that KB |= φ iff KB ∪ {¬φ} is unsatisfiable. called resolution rule:

$$\frac{C_1 \cup \{X\}, \ C_2 \cup \{\neg X\}}{C_1 \cup C_2},$$

where C_1 and C_2 are (possibly empty) clauses and X is an atomic proposition.

- X and $\neg X$ are the resolution literals.
- $C_1 \cup \{X\}$ and $C_2 \cup \{\neg X\}$ are the parent clauses, and
- $C_1 \cup C_2$ is the resolvent.

Definition (Proof by Resolution)

A proof by resolution of a clause D from a knowledge base Δ is a sequence of clauses C_1, \ldots, C_n with

- $C_n = D$ and
- for all $i \in \{1, ..., n\}$:
 - $C_i \in \Delta$, or
 - C_i is resolvent of two clauses from {C₁,..., C_{i-1}}.

If there is a proof of D by resolution from Δ , we say that D can be derived with resolution from Δ and write $\Delta \vdash_R D$.

- Reduce logical consequence to unsatisfiability.
- Transform knowledge base into clause form (CNF).

Step 1: Reduce logical consequence to unsatisfiability. $KB \models (R \lor S) \text{ iff } KB \cup \{\neg (R \lor S)\} \text{ is unsatisfiable.}$

Definition (Signature)

A signature (of predicate logic) is a 4-tuple $S = \langle V, C, F, P \rangle$ consisting of the following four disjoint sets:

- a finite or countable set V of variable symbols
- a finite or countable set C of constant symbols
- lacksquare a finite or countable set ${\mathcal F}$ of function symbols lacksquare a finite or countable set ${\cal P}$ of predicate symbols

Every function symbol $f \in \mathcal{F}$ and predicate symbol $P \in \mathcal{P}$ has an associated arity $ar(f), ar(P) \in \mathbb{N}_1$ (number of arguments)

Definition (Term)

(or relation symbols)

Let $S = \langle V, C, F, P \rangle$ be a signature. A term (over S) is inductively constructed according to the following rules:

- Every variable symbol $\mathbf{v} \in \mathcal{V}$ is a term.
- Every constant symbol $c \in C$ is a term.
- lacksquare If t_1,\ldots,t_k are terms and ${f f}\in {\cal F}$ is a function symbol with arity k, then $f(t_1, \ldots, t_k)$ is a term.

For a signature $\mathcal{S}=\langle \mathcal{V},\mathcal{C},\mathcal{F},\mathcal{P}\rangle$ the set of predicate logic formul (over \mathcal{S}) is inductively defined as follows:

- If t_1, \ldots, t_k are terms (over \mathcal{S}) and $\mathsf{P} \in \mathcal{P}$ is a k-ary predicate symbol, then the at c formula (or the atom) $P(t_1, ..., t_k)$ is a formula over S.
- If t_1 and t_2 are terms (over S), then the identity ($t_1 = t_2$) is a formula over S.
- If $x \in \mathcal{V}$ is a variable symbol and φ a formula over \mathcal{S} , then the universal quantification $\forall x \varphi$ and the existential quantification $\exists x \varphi$ are formulas over S.
- If φ is a formula over S, then so is its negation ¬φ.
- If φ and ψ are formulas over S, then so are the conjunction $(\varphi \wedge \psi)$ and the disjunction $(\varphi \vee \psi)$.

Definition (Interpretation, Variable Assignment)

An interpretation (for S) is a pair $\mathcal{I} = \langle U, \mathcal{I} \rangle$ of:

- a non-empty set U called the uni erse and
- a function ¹ that assigns a meaning to the constant, function, and predicate symbols:

 - $\begin{array}{ll} & c^{\mathcal{Z}} \subseteq \mathcal{U} \text{ for constant symbols } c \in \mathcal{C} \\ & \text{ } \mathbf{f}^{\mathcal{I}} : \mathcal{U}^k \mapsto \mathcal{U} \text{ for k-ary function symbols } \mathbf{f} \in \mathcal{F} \\ & \mathbf{P}^{\mathcal{Z}} \subseteq \mathcal{U}^k \text{ for k-ary predicate symbols } \mathbf{P} \in \mathcal{P} \end{array}$

A variable assignment (for S and universe U)

is a function $\alpha: \mathcal{V} \to U$. maps